FEASIBILITY STUDY OF APPROPRIATE DROWSINESS DETECTION SYSTEM FOR COMMERCIAL PURPOSE

Abstract

One of the road accident cause is drowsiness while driving. The proposed drowsiness detector system developed and expected to reduce the road accident from drowsiness. Focusing on truck transportation providers which are High-risk groups for drowsiness. The data from drowsiness related article, technology for drowsiness detection and in-depth interview of 8 major inland transportation providers were analyzed and use to design this drowsiness detector system. The results showed that 87 percent of major inland transportation providers are interested in this system and want to apply the system in their transport operation.
Initial investment is 2,400,000 Baht, net present value is 16,999,539 Baht, representing an investment in the project and an internal rate of return of 67%, which is 11.7% higher than the capital cost. The payback period of the project is 3 year and 2 months. In conclusion, the project is attractive to commercial investment.

Keywords: Drowsiness, Detection system, Road accident

ความเป็นมาและความสำคัญของโครงการ

ปัจจุบันการนอนเป็นในประเทศมีปัญหาสูงนิยมมาก โดยเฉพาะการเหยื่อการอาบิงของรถ ได้มีการพัฒนาโครงการช่วยทางหลัง ด้านการตรวจสอบการณ์ที่จะทำให้ประชาชนใช้สัญจรไปมาได้อย่างปลอดภัย รวดเร็ว ซึ่งจะช่วยในการส่งเสริมทางเศรษฐกิจในด้านการขนส่ง และการขนส่งที่ปลอดภัย สำหรับประชาชนทั้งในและผู้ใช้ชีวิตในประเทศไทยเพิ่มขึ้นอย่างรวดเร็ว

เนื่องด้วยการนอนเป็นการช่วยให้สามารถเกิดอุบัติเหตุเพิ่มขึ้นมาก ดังที่มีการชื่นชอบขององค์การสุขภาพโลก (WHO) ประเทศไทยอยู่ในระดับ 2 ของโลกในการมีเสียชีวิตจากอุบัติเหตุทางถนนและตายในจำนวน 1 ใน 1,000 วัยที่มีการเกิดอุบัติเหตุทางรถในขณะขับรถ ซึ่งตามข้อมูลของสำนักงานด้านงานจราจรทางชาติพบว่ามีแนวโน้มเพิ่มขึ้นทุกปี ภาพกราฟแสดงอุบัติเหตุจากการหันไปในขณะขับขี่รถในประเทศไทย

![Graph showing the percentage of accidents in Thailand](http://www.nso.go.th/sites/2014/Pages/เนื้อหาสถิติพื้นฐานที่เป็นข้อมูลเฉพาะจังหวัดสุติเดือนการจราจรทางถนน.aspx)

จากภาพกราฟแสดงพบว่า ในปัจจุบันมีอุบัติเหตุของผู้ขับขี่รถในประเทศไทย ที่มีรายกันตามชั้นของเพศ ทำให้ผู้ขับขี่สามารถตัดสินใจเสี่ยงขึ้นมาก ไม่ใช่เป็นปัจจัยที่จากระบบการขนส่งในขณะขับรถ ปัจจุบันข้อมูลจากสถิติอุบัติเหตุจากการขับขี่ 2018.
หลับในชั่วโมงที่เพียงขึ้นไม่แสดงถึงถึงการที่มีอุปกรณ์ป้องกันหลับในมากกว่าระยะเวลาในเวลา ซึ่งมีรูปแบบเกิด แม้จะมีการป้องกันการหลับในแล้ว แต่ท้าทายอุปกรณ์จากมีการช่วงนอนหรือหลับในไม่ได้แสดง

ทั้งนี้ช่วยส่งเสริมการตื่นสุขในพื้นที่ในการป้องกันความเป็นไปได้ในการตัดสินแบบเรียกร้องรูปแบบการป้องกันการช่วงนอนหรือหลับใน ไม่ได้เป็นประโยชน์ในการเพิ่มความตื่นทางการของกลุ่มลูกค้าเป็นมาก

วัตถุประสงค์ของการศึกษา

1. ศึกษาเกี่ยวกับหลักการและพฤติกรรมที่เกี่ยวข้องกับการช่วงนอน เพื่อให้เป็นข้อมูลพื้นฐานในการสร้างระบบป้องกันการช่วงนอนหรือหลับในที่มีประสิทธิภาพ
2. ศึกษาเทคโนโลยีที่มีอยู่ในปัจจุบันในการช่วงนอนหรือหลับใน เพื่อนำมาประยุกต์ใช้สำหรับการออกแบบระบบป้องกันการช่วงนอนหรือหลับในที่เหมาะสม
3. ส่งเสริมและวิเคราะห์ปริมาณการป้องกันการหลับในของลูกค้าในปัจจุบัน รวมถึงความตื่นทางการของลูกค้าในอนาคต เพื่อนำมาใช้ในการออกแบบระบบที่มีการตรวจสอบการตื่นทางการของลูกค้าได้มากที่สุด
4. ศึกษาความเป็นไปได้ด้านธุรกิจของระบบป้องกันการช่วงนอนหรือหลับในรูปแบบใหม่

การบรรณาภรณ์

ภาวะหลับใน คืออะไร

ภาวะหลับในหรือช่วงหลับในระยะสั้น ๆ (Microsleep) เป็นปรากฏการณ์การสับสนระหว่างการหลับและการตื่นโดยการหลับเข้ามาเพราะการตื่นอย่างที่หลับในโดยไม่รู้ตัวในช่วงเวลาสั้น ๆ ประมาณ 1-2 วินาที (นพ.ศิริน โณลีลา, 2560)

สาเหตุของการหลับใน

- การตนเองถึงการนอนน้อยกว่า 7 ชั่วโมงต่อวัน
- การนอนไม่เป็นเวลานอน การอหังการ์scheduled sleep
- การเปลี่ยนแปลงเวลาทำงาน เช่นการทำงานในเวลา (shift work)
- โรคที่เกี่ยวกับการนอน (Untreated sleep disorder) ความอ่อนเพลียในการตื่น
- การรับประทานยาที่มีอิทธิพลที่จะช่วยجعل
- การดื่มน้ำมันและยา

อาชีพที่มีความเสี่ยงต่อการหลับในมากที่สุด

- ช่างการบิน ไม่เข้าพบกับของไป, แรงงานและขายยาตัว
- Commercial drivers)
การตรวจสอบความเปลี่ยนแปลงของว่ากายนี้ถ้าสู่ภาวะว่างงานหรือหลับในขณะขับรถ

จากที่คู่มือดำเนินการระบุในปัจจุบันมีเทคโนโลยีในการตรวจสอบความเปลี่ยนแปลงของว่ากายนี้ถ้าสู่ภาวะว่างงานหรือหลับในขณะขับรถ 6 ประเภท จำแนกออกได้ดังนี้

ตารางแสดงรูปแบบและเทคโนโลยีในการตรวจสอบความเปลี่ยนแปลงของว่ากายนี้ถ้าสู่ภาวะว่างงานหรือหลับในขณะขับรถ

<table>
<thead>
<tr>
<th>รูปแบบการตรวจสอบ</th>
<th>วิธีการตรวจสอบ</th>
<th>ตัวอย่างเทคโนโลยี</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>การตรวจสอบด้วยคลื่นไฟฟ้าสมอง</td>
<td>Electroencephalography (EEG)</td>
</tr>
<tr>
<td>2</td>
<td>การตรวจสอบด้วยคลื่นไฟฟ้าหัวใจ</td>
<td>Electrocardiography (ECG)</td>
</tr>
<tr>
<td>3</td>
<td>การตรวจสอบด้วยความสัมผานผิวหนัง</td>
<td>Electrodermal activity (EDA)</td>
</tr>
<tr>
<td>4</td>
<td>การตรวจสอบด้วยการสังเกตการ เคลื่อนไหวของวัตถุในรถ</td>
<td>Motion detection by - Accelerometer - Camera</td>
</tr>
<tr>
<td>5</td>
<td>การตรวจสอบด้วยการวิเคราะห์ข้อมูล ส่วนบุคคล</td>
<td>Data analysis</td>
</tr>
<tr>
<td>6</td>
<td>การตรวจสอบด้วยพฤติกรรมการขับรถ</td>
<td>Steering movements Lane Departure Warning System</td>
</tr>
</tbody>
</table>

ระเบียบวิธีการ

ลักษณะประชากรและกลุ่มตัวอย่าง

ทางผู้วิจัยให้เก็บรวบรวมข้อมูลกลุ่มประชากรที่เป็นผู้ที่ทำงานเกี่ยวกับการขับรถอย่างต่อเนื่องตั้งแต่ 1 ต่อ 7 วันต่อเดือน ปัจจุบัน ได้ถือเป็นบริษัทขนาดกลางและใหญ่ทั้งสิ้น รวมถึง การสัมภาษณ์ผู้สื่อสารทางอินเทอร์เน็ต (indirect customer) อย่างเป็นรูปธรรมของบริษัทรายหนึ่งในแต่ละพื้นที่ จำแนกตาม 1 ต่อรายได้ เพราะผู้วิจัยพิจารณาว่าเป็นผู้ที่มีประสบการณ์ในการประกอบธุรกิจในโครงการและดำเนินการขนส่งในส่วน ขนส่งเพื่อให้ประสิทธิภาพในการทำงานเพิ่มขึ้นและได้ผลที่มีความเป็นไปอย่างต่อเนื่อง

เกณฑ์การเลือกกลุ่มตัวอย่างในการสัมภาษณ์

- ตัวแปรระดับผู้จัดการทางการเงินหรือผู้อื่นที่เกี่ยวข้อง

เนื่องจากเป็นตัวแปรที่อยู่ในระดับผู้บริหารระดับสูงและพนักงานระดับปฏิบัติการ ควรมีความเป็นไปของตัวแปรนี้คือ การวิเคราะห์ข้อมูลเพื่อเป็นการตัดสินใจของระดับปฏิบัติการได้ รวมถึงเป็นตัวแปรที่สามารถสะพัดผู้บริหารระดับสูงในการตัดสินใจในแต่ละโครงการได้

- ประสบการณ์การทำงานด้านการจัดการขนส่งทางอากาศ ปี钳ไม่ต่ำกว่า 10 ปี
เพื่อให้แน่ใจว่าคำตอบที่ได้จากการสัมภาษณ์จะมีความน่าเชื่อถือและความถูกต้อง ระบบฟังสัมภาษณ์ใช้ประสบการณ์ที่ดีในการเสนอแนะข้อดีต่างๆที่มีประโยชน์

เครื่องมือที่ใช้ในการวิจัย

สำหรับเครื่องมือที่มีความเหมาะสมในการนำมาใช้สำหรับกำหนดวิธีการวิจัยหรือกระบวนวิธีการวิจัย (methodology) ครั้งนี้คือ การใช้วิธีการวิจัยเชิงคุณภาพ (Qualitative Research) ในรูปแบบการสัมภาษณ์เชิงลึก (In-depth interview) โดยผู้วิจัยเลือกใช้สังเกตการณ์แบบที่ตกลงแบบโครงสร้างคำถามก่อน (Structured interview) เพื่อให้สามารถเรียบเรียงความต้องการของแต่ละบุคคลได้ แล้วนำไปสู่การวิเคราะห์โดยใช้เวลาประมาณ 30-40 นาทีต่อท่าน

สรุปผลการวิจัย

ผู้วิจัยได้นำข้อมูลจากการศึกษาและการสัมภาษณ์มาวิเคราะห์และสรุปเป็นเทคโนโลยีที่เหมาะสมสำหรับระบบป้องกันการ่งอนหรือหลุดใน ที่หนึ่งในการพิจารณาความเหมาะสมจะต้องมีข้อเสนอแนะว่าเป็นไปได้และสามารถต้องการของลูกค้าในอนาคตเช่นกัน โดยจะเน้นในการพัฒนาระบบที่เหมาะสมมี zaritelad ดังนี้

ตารางการวิเคราะห์ระดับเทคโนโลยีที่เหมาะสมของระบบป้องกันการ่งอนหรือหลุดใน

<table>
<thead>
<tr>
<th>ช่วงเวลาในการป้องกัน</th>
<th>การออกแบบระบบป้องกันที่เหมาะสม</th>
<th>แก้ปัญหาและลดความต้องการลูกค้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>ก่อนเริ่มการขับขี่</td>
<td>ปัจจุบันลูกค้ามีการตรวจสอบความถูกต้องโดย GPS แล้ว แม้ว่าจะมีการตกหล่นในระบบจะ ผลิตภัณฑ์ก่อนได้แล้วแต่การที่ลูกค้า และ ไม่มีประสบการณ์ของการล่าช้า ในการตรวจสอบ การส่งมอบหรือสิ้นในแผนการจัดส่งสิน ทางด่วนนำหน้าที่ส่งที่เป็นที่นี่ของทาง ตรวจสอบและการจัดส่ง</td>
<td>แก้ปัญหาการตรวจสอบที่ไม่ครบถ้วนในเรื่อง ของจำนวนและเน้นในการตรวจสอบได้ รวมถึงการจัดส่งที่ล่าช้าและทันใดที่ ลูกค้าที่มี ทำให้เพิ่มประสิทธิภาพในการส่ง ทันเป็นลูกค้า นอกจากนี้แล้วที่มีไม่ให้ จำเป็นต้องสุ่มสิ่งที่เกี่ยวข้องกับที่ลูกค้า สามารถลด เลือกการที่ทำนั้นและนำไปสู่การ ประสิทธิภาพในการทำงานส่วนนี้ได้</td>
</tr>
<tr>
<td>ขณะขับขี่</td>
<td>ลูกค้าได้รับผลการจัดส่งเสร็จที่มีการทำงาน หรือการผลิตของลูกค้า โดยใช้ ข้อมูลจากข้างล่างเพื่อไม่เป็นที่สุดในกรณี บริหารตัดสินใจตามวิธีการป้องกัน วิธีการส่งของลูกค้าและทำงานของลูกค้าในมิติ ตั้งในระบบที่เหมาะสมและจัดตั้งขึ้น</td>
<td>ตอบโจทย์เรื่องของการนำข้อมูลภายในมา พัฒนาระบบเพื่อป้องกันและลดความเสี่ยงใน การเกิดขึ้นในใหญ่จากการปฏิบัติด้านงานตลาด ได้ ซึ่งจึงจะวัตถุประสงค์การพัฒนาของบริษัท ด้านความปลอดภัยและทันสมัยด้วย รวมถึง สามารถใช้เป็นรูปแบบได้ที่ดี</td>
</tr>
</tbody>
</table>
เครื่องมือตรวจจับความล้าบู่ด้วยการตรวจจับความตื่น

ข้อมูลจากการวินิจฉัยข้างต้น สามารถนำไปใช้ในอีกฝั่งสวนสำหรับการวินิจฉัยในแบบ.ldin-ดาน. ดังนั้น
ระบบป้องกันการล้าบู่เรียกว่าในที่เหมาะสมในการประยุกต์ใช้ในพื้นที่ที่มีซึ่งเดียว
KE-A drowsiness detector system หรือ ระบบป้องกันการล้าบู่เรียกว่าใน เค-เอ (เค-เอ)

ภาพรวมเกี่ยวกับการล้าบู่เรียกว่าใน เค-เอ

ระบบป้องกันการล้าบู่เรียกว่าใน KE-A เป็นการเลือกใช้เทคโนโลยีการตรวจจับอาการล้าบู่จาก
คลื่นไฟฟ้าคลื่นนิวเคลียร์ 2 สำหรับหลักคือ

1. ระบบตรวจจับความล้าบู่ (Sleep Deprivation Detector)

ภาพการตรวจจับด้วยระบบตรวจจับการล้าบู่ (Sleep Deprivation Detector)

การที่พูดถึงการตรวจจับความตื่นคือการตรวจจับความล้าบู่เร็วที่สุดที่เคยถูกเล่าต่อมานั้น ทำให้ทางผู้จัดทิ้ง
ความคิดในการนำระบบตรวจจับการล้าบู่ (Sleep Deprivation Detector) เข้าไปเป็นหนึ่งในหลักการทดสอบที่คนบี
จะต้องหลีกเลี่ยงการล้าบู่ที่ล้าบู่ ผลลัพธ์ของระบบนี้จะแสดงว่าผู้ที่ต้องเก็บอัตราการล้าบู่ลดลงมากกว่า 7 ชั่วโมงที่สุด
เมื่อที่งาน ซึ่งมีความเสี่ยงต่อการทำงานล้าบู่นี้เป็นวิธีเดียวที่จะป้องกัน

2. ระบบตรวจจับด้วยระบบตรวจจับการล้าบู่ (Drowsiness Detector)

ภาพการตรวจจับด้วยระบบตรวจจับการล้าบู่ (Drowsiness Detector)
เป็นระบบที่ใช้ตรวจสอบสถานะการตั้งค่าของเครื่องมือจ่ายค่าสินค้า โดยที่สามารถตรวจสอบได้ ครอบคลุมทั้งระบบควบคุมและเวลาในการตรวจสอบ มีฟังก์ชั่นวัดค่าซึ่งจะต้องมีต่อเครื่องมือเวลา แอพลิเคชั่น KE-A แบ่งหน้าจอสีที่จะทำการวิเคราะห์สถานะสัญญาณ ลักษณะเบื้องต้นถ้ามีการตั้งค่าที่ เปลี่ยนแปลงไป มีแอพลิเคชั่นจะส่งสัญญาณผ่านไปยัง Control Center ทำให้คนที่อยู่อยู่ในสถานที่บริการตัวอย่าง พร้อมทั้งส่ง สัญญาณแจ้งให้คนงานที่อยู่อยู่ได้รับข้อมูลให้คนงานทราบว่าคนขับคนใดอยู่ในสถานะร่วมงาน หน้าจอจะทำการ yöร์ที่คนขับคนนั้นและบริการการแจ้งเตือนไป นอกจากนี้ระบบยังสามารถส่งรายงาน เพื่อนำไปใช้ในการนั่งนิยมต่อ รู้วิธีการ เป็นแนวทางในการแก้ไขปัญหาการเกิดอุบัติเหตุจากการหลับในต่อไป

ฟังก์ชันการใช้งานและ Mock up ของระบบ

ระบบ KE-A นี้สามารถแยกฟังก์ชันการทำงานแล้วได้เป็น 3 ส่วนคือ

- Mobile application สำหรับคนขับ

ภาพฟังก์ชันและ Mock up ของ Mobile application สำหรับคนขับ

1. Logo page: แสดงโลโก้เครื่อง KE-A ที่จะใช้แสดงชื่อและที่อยู่ของคนขับ
2. Login: หน้าเลือก username และ password ของคนขับจะทำการ login เพื่อใช้งานระบบ
3. Real time monitor unconnected status: หน้าจอแสดงสถานะการตั้งค่าแอพพลิเคชั่น ไม่ติดต่อกับ Bluetooth
4. Real time monitor connected status: แสดงสถานะการตั้งค่าแอพพลิเคชั่นกับเครื่องมือ
5. On screen alert: หน้าแจ้งเตือนเมื่อระบบตรวจพบการตั้งค่าเหมือนเดิมอยู่เป็นแอพพลิเคชั่นอยู่
6. Pop up alert: หน้าแจ้งเตือนเมื่อระบบตรวจพบการตั้งค่าเหมือนเดิมที่คนขับออกจากแอพพลิเคชั่นแล้ว

ถ้าระบบสามารถแจ้งสัญญาณแจ้งเตือนการตั้งค่าของคนขับได้แล้ว ถ้าจะต้องส่งสัญญาณให้ไปที่ control center โดย เชนใน Mobile application สำหรับคนขับ จะมีการแจ้งเตือนว่า หน้า != logo และหน้า != login จะ เหมือนกับคนขับต่างกันที่ username ที่จะแจ้งฟังก์ชันว่าจะต้องเก็บข้อมูลของคนขับของพนักงานที่ control center
1. **My driver:** ใช้แสดงสถานะของคนขับ ได้แก่ login แพทย์สิ้นสุดหรือไม่ และยังสามารถเข้าถึงรายการของคนขับ ของแต่ละขับในขณะที่รถเดินทางได้ เพื่อให้สามารถเข้าถึงการเปลี่ยนแปลงของคนขับอย่างมีประสิทธิภาพ ผ่านทางเว็บไซต์ของร้านที่ประสงค์จะเชื่อมต่อได้

2. **Connect status:** ใช้สำหรับแสดงสถานะการเชื่อมต่อของแพทย์ในส่วนของคนขับ เลือกจะเชื่อมต่อหรือไม่

3. **Search:** เป็นฟังก์ชันที่สามารถใช้ค้นหาอย่างเฉพาะเจาะจงได้ทั้งข้อมูลขับขี่และข้อมูล route

4. **Pop up alert:** เมื่อคนขับขี่ได้เดินทางเสร็จ บนเว็บไซต์ของร้านจะถูกส่งมาที่ control center ด้วย โดย หน้าที่แจ้งเตือนจะมีข้อมูล route รวมถึงเบอร์โทรศัพท์ติดต่อ เพื่อความสะดวก รับแจ้งในการติดต่อไปที่ ศูนย์ควบคุม

นอกจากนี้ระบบ KE-A ได้ดำเนินการใช้งานรูปแบบเดิมที่เปรียบเทียบจะเก็บข้อมูลของคนขับในรูปแบบของไฟล์ Microsoft Excel และใช้คอมพิวเตอร์เป็นอุปกรณ์ในการแก้ ดังนั้นองค์กรจะได้พัฒนา platform ที่เป็น website ขึ้นมาเพื่อรับร่างการนับข้อมูลคนขับทั้งหมดเข้าไปในระบบ KE-A รวมถึงเรื่องของการติดต่อกับรายงานเพื่อนำเสนออยู่บริหาร ด้วย
บทความจากการศึกษาความเป็นไปได้ของโครงการ

สรุปผลลัพธ์การขอรับบริการระบบ

ที่ผู้รับผิดชอบได้นำแนวคิดของระบบไปทำจริง ความคิดเห็นจากทุกฝ่ายจะดึงดูด ดี มีประสิทธิภาพในการใช้งานป้องกันการลักขโมยหรือหลุดไปในนี้ เนื่องจากสามารถแก้ปัญหาของระบบในการวินิจฉัยได้ และยังมีประสิทธิภาพในการตรวจสอบที่ครอบคลุมมากขึ้น มีการให้เห็นระบบเป็นที่ยอมรับของผู้ใช้ ดังกล่าวถึงในการนำบัตรมาดังกล่าวไปด้วยระบบการป้องกันการหลุดไม่ได้

สรุปผลประเมินด้านการตลาด

การทำศึกษาความเป็นไปได้ในทางการตลาดพบว่า ระบบมีความเป็นไปได้ในการพัฒนาและเป็นที่ยอมรับของตลาดกลุ่มลูกค้าเป้าหมาย ซึ่งที่นี่เป็นการปรับจัดทางการตลาดล่วงหน้าว่า แนวโน้มของดูแลทรัพย์สินการรักษาแบบรักษาการขายเพื่อให้ผู้ประกอบการต้องจดจำไว้ในใจ เนื่องจากมีการเติบโตของเทคโนโลยีและความปลอดภัยในการประกอบ ซึ่งเป็นโอกาสในการพัฒนาระบบป้องกันการลักขโมยแบบดิจิทัลหรือหลุดไปในที่มีระบบแบบสมบูรณ์กับการใช้งาน เพื่อนำมาใช้ในการเพิ่มประสิทธิภาพในการป้องกันภัยดิจิทัลที่อาจเกิดขึ้นในการขนส่งสินค้าได้

สรุปผลประเมินด้านการดำเนินงาน

การขออนุญาตกิจการในเทคโนโลยีสิทธิบัตรต่างๆ สำหรับการสร้างระบบป้องกันการลักขโมยในเทคโนโลยี พูดว่ารูปแบบการที่ Licensing ซึ่งเป็นการค่าตอบแทนที่สอดคล้องกับการใช้เทคโนโลยีและผู้ใช้สิทธิ์ ส่งต่อกำลังในการดำเนินการนั้น มีการจัดทำตารางการดำเนินงานเพื่อออกแบบและพัฒนาระบบ โดยนำข้อมูลจากการศึกษาด้านธุรกิจเทคโนโลยีที่เกี่ยวข้อง รวมถึงข้อมูลที่ได้จากการสัมภาษณ์ผู้ประกอบทางด้านซอฟต์แวร์และระบบวิเคราะห์และข้อมูลที่ได้สอดคล้องในการดำเนินไปเป็นข้อมูลเบื้องต้นเพื่อเข้าสู่ระบบให้มีประสิทธิภาพและตรงกับความต้องการของผู้ใช้งาน ซึ่งทั้งนี้สามารถนำไปออกแบบสินค้าให้สู่ตลาดในเชิงพาณิชย์ได้

สรุปผลประเมินด้านการเงิน

จากผลของที่ได้มาจากการดำเนินงานและค่าการให้บริการระบบต่อ每個เรื่อง ได้ 2,620 บาทต่อคู่สิบปี การจัดทำโครงการมีความเหมาะสมในการลงทุน เนื่องจากมูลค่าการจัดหาของโครงการมีค่าเป็นระดับ 18.9% ด้านบวก และ
ข้อเสนอแนะโครงการ

ผู้วิจัยได้ศึกษาเกี่ยวกับแนวคิดของระบุแบบบําบัดกับการ某某องหนึงหรือสับในที่เหมาะสมเท่านั้น (Conceptual product) ไม่ได้มีการขึ้นรูปเป็นผลิตภัณฑ์แบบ (Prototype) ซึ่งทำให้การศึกษาไม่ได้ครอบคลุมถึงการที่
ผลิตภัณฑ์แบบทดลองกับกลุ่มตัวอย่าง เช่น เพื่อให้ทราบถึงข้อจํากัดของผลิตภัณฑ์ในสถานการณ์จริง รวมถึง
สำรวจความพึงพอใจต่อกิจการใช้งานแบบและข้อเสนอแนะต่างๆ ซึ่งสามารถนำมาปรับปรุงแก้ไขระบบได้ต่อไป ดังนั้นก่อน
เริ่มสรุป ควรพัฒนาผลิตภัณฑ์แบบเพื่อนำไปทดลองให้กับกลุ่มในการทดสอบและความพึงพอใจของลูกค้าทําผ่าน

บรรณานุกรม

สำนักงานสถิติแห่งชาติ กระทรวงเทคโนโลยีสารสนเทศและการสื่อสาร. ข้อมูลสถิติอุตสาหกิจการจราจรทางบก. สีบั้นเมื่อ
วันที่ 10 มกราคม 2561. เข้าถึงได้จาก http://www.nso.go.th/sites/2014/Pages/บริการสถิติพื้นฐานที่เป็นอนุกรมของเรา/
ลู่พิพัฒน์การจราจรทางบก.aspx

นพ.ชัยรัตน์ ศรีสิทธิ์ (2560). ภาวะหลับใน ระวังไว้ไม่ให้ชีวิต. สีบั้นเมื่อวันที่ 11 มกราคม 2561, เข้าถึงได้จาก

วิกิพีเดีย. สารานุกรมเสรี. การวินิจฉัยและรักษาโรคในสมอง. สีบั้นเมื่อวันที่ 17 มกราคม 2561, เข้าถึงได้จาก
https://th.wikipedia.org/wiki/การวินิจฉัยและรักษาโรคในสมอง

José Vicente, Pablo Laguna, Ariadna Bartra, Raquel Bailón, International Federation for Medical and
Biological Engineering (2559). Drowsiness Detection System by heart rate variability. สีบั้นเมื่อวันที่ 18

Thomas J. Sullivan, Thomas J. Sullivan, Stephen R. Deiss, and Gert Cauwenberghs, Division of Biological
Sciences, University of California (2550). A Low-Noise, Non-Contact EEG/ECG Sensor. สีบั้นเมื่อวันที่ 18
มกราคม 2561, เข้าถึงได้จาก
https://pdfs.semanticscholar.org/ad61/0e26c30e8ad74494a44837ce35d17ded35b1.pdf

วิกิตี้ สารานุกรมเสรี. การตรวจจับความดันผิวหนังของผู้คน. สีบั้นเมื่อวันที่ 6 กุมภาพันธ์ 2561, เข้าถึงได้จาก

GUARDIANSYSTEM. เทคโนโลยีการตรวจสอบจากการสับในภูมิศาสตร์สื่อของกลีบสดและศิริยา. สีบั้นเมื่อวันที่ 25
กุมภาพันธ์ 2561, เข้าถึงได้จาก http://www.guardiansystem.com/